The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here, we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman), and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP, and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids, and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., :1-10, 2018.