Background: The adverse effect of low-dose CT on image quality may be mitigated using iterative reconstructions. The purpose of this study was to evaluate the performance of the full model-based iterative reconstruction (MBIR) and adaptive statistical reconstruction (ASIR) algorithms in low radiation dose and low contrast dose abdominal contrast-enhanced CT (CECT) in children. Methods: A total of 59 children (32 males and 27 females) undergoing low radiation dose (100kVp) and low contrast dose (270 mgI/ml) abdominal CECT were enrolled. The median age was 4.0 years (ranging from 0.3 to 13 years). The raw data were reconstructed with MBIR, ASIR and filtered back projection (FBP) algorithms into 6 groups (MBIR, 100%ASIR, 80%ASIR, 60%ASIR, 40%ASIR and FBP). The CT numbers, standard deviations, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of liver, pancreas, kidney and abdominal aorta were measured. Two radiologists independently evaluated the subjective image quality including the overall image noise and structure display ability on a 4-point scale with 3 being clinically acceptable. The measurements among the reconstruction groups were compared using one-way ANOVA. Results: The overall image noise score and display ability were 4.00±0.00 and 4.00±0.00 with MBIR, and 3.27±0.33 and 3.25±0.43 with ASIR100%, respectively, which met the diagnostic requirement; other reconstructions couldn't meet the diagnostic requirements. Compared with FBP images, the noise of MBIR images was reduced by 62.86%-65.73% for the respective organs (F=48.15-80.47, P<0.05), and CNR increased by 151.38%-170.69% (F=22.94-38.02, P<0.05). Conclusions: MBIR or ASIR100% improves the image quality of low radiation dose and contrast dose abdominal CT in children to meet the diagnostic requirements, and MBIR has the best performance. Trial registration: retrospectively registered.