This study examines the use of a nonreactive solvent vapor, tert-butanol, during initiated chemical vapor deposition (iCVD) to promote polymer film dewetting. iCVD is a solventless technique to grow polymer thin films directly from gas phase feeds. Using a custom-built axisymmetric hot-zone reactor, smooth poly(methyl methacrylate) films are grown from methyl methacrylate (MMA) and tert-butyl peroxide (TBPO). When solvent vapor is used, nonequilibrium dewetted structures comprising of randomly distributed polymer droplets are observed. The length scale of observed topographies, determined using power spectral density (PSD) analysis, ranges from 5 to 100 microm and is influenced by deposition conditions, especially the carrier gas and solvent vapor flow rates. The use of a carrier gas leads to faster deposition rates and suppresses thin film dewetting. The use of solvent vapor promotes dewetting and leads to larger length scales of the dewetted features. Control over lateral length scale is demonstrated by preparation of hierarchal "bump on bump" topographies. Vapor-induced dewetting is demonstrated on silicon wafer substrate with a native oxide layer and also on hydrophobically modified substrate prepared using silane coupling. Autophobic dewetting of PMMA from SiOx/Si during iCVD is attributed to a thin film instability driven by both long-range van der Waals forces and short-range polar interactions.