2018
DOI: 10.1155/2018/8204568
|View full text |Cite
|
Sign up to set email alerts
|

Determination of Fire Resistance of Eccentrically Loaded Reinforced Concrete Columns Using Fuzzy Neural Networks

Abstract: Artificial neural networks, in interaction with fuzzy logic, genetic algorithms, and fuzzy neural networks, represent an example of a modern interdisciplinary field, especially when it comes to solving certain types of engineering problems that could not be solved using traditional modeling methods and statistical methods. They represent a modern trend in practical developments within the prognostic modeling field and, with acceptable limitations, enjoy a generally recognized perspective for application in con… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 26 publications
0
2
0
1
Order By: Relevance
“…Traditional machine learning methods are support vector machine (SVM) [18], fuzzy neural networks [19], smoke segmentation-based local binary pattern Silhouettes coefficient variant (LSPSCV) [20], color segmentation-based radial basis function (RBF) nonlinear Gaussian kernel-based binary SVM [21], color segmentation-based fuzzy model [22], and fire frame segmentation-based Markov random field [23]. However, most existing studies on fire detection train models using smoke or flame from videos are often difficult to track more complicated smoke situations.…”
Section: Introductionmentioning
confidence: 99%
“…Traditional machine learning methods are support vector machine (SVM) [18], fuzzy neural networks [19], smoke segmentation-based local binary pattern Silhouettes coefficient variant (LSPSCV) [20], color segmentation-based radial basis function (RBF) nonlinear Gaussian kernel-based binary SVM [21], color segmentation-based fuzzy model [22], and fire frame segmentation-based Markov random field [23]. However, most existing studies on fire detection train models using smoke or flame from videos are often difficult to track more complicated smoke situations.…”
Section: Introductionmentioning
confidence: 99%
“…As a result of increasing energy demand, the offshore oil and gas industry is using the advanced technologies to explore more remote, deeper, and harsh environments [1][2][3][4][5][6]. Thus, hazard for accidental loads and the related engineering problems are increasing and both the risk management for such an issue and technical design method for getting a resistance against the potential incidents are becoming more challenging [7]. Speaking of a floating production storage and offloading (FPSO) facility, it is a representative multifunctional structural system in the offshore industry.…”
Section: Introductionmentioning
confidence: 99%
“…neuronas en la segunda capa oculta y 1 neurona en la capa de salida, estableciendo como variables de entrada la resistencia a la compresión, la velocidad de pulso y el peso unitario. Asimismo, la red neuronal predijo la resistencia a la compresión del concreto con un R 2 de 0,7027 y un error promedio fue de 9,3%; también, los datos de la resistividad eléctrica del concreto simulados tuvieron un R 2 de 0,4281 y un error promedio de 30,7%.3.2.4 Resistencia al fuegoEn[16] se propuso el modelo de RNA Adaptive Neuro-Fuzzy Interface System (ANFIS) para pronosticar la resistencia al fuego de las columnas de concreto, para ello construyeron una base de datos a partir de los resultados obtenidos del análisis numérico a los elementos estructurales de los diseños de las edificaciones. En total, fueron analizaron 398 series de datos que conformaron el conjunto de datos de las cuales 318 (80%) fueron utilizados para el entrenamiento y 80 (20%) para validación.…”
unclassified