Metoprolol (MTP) is one of the most widely used antihypertensive drugs yet banned to use in sport competition. Therefore, there has been an increasing demand for developing simple, rapid, and sensitive methods suited to the identification and quantification of MTP in human biofluids. In this work, ultrathin silica nanochannel membrane (SNM) with perforated channels was employed to support nanoscale liquid/liquid interface (nano-ITIES) array for investigation of the ion-transfer voltammetric behavior of MTP and for its detection in multiple human biofluids and pharmaceutical formulation. Several potential interfering substances, including small molecules, d-glucose, urea, ascorbic acid, glycine, magnesium chloride, sodium sulfate and large molecules, bovine serum albumin (BSA), were chosen as models of biological interferences to examine their influence on the ion-transfer current signal of MTP. The results confirmed that the steady-state current wave barely changed in the presence of small molecules. Although BSA displayed an apparent blockade on the transfer of MTP, the accurate determination of MTP in multiple human biofluids (i.e., urine, serum and whole blood) and pharmaceutical formulation were still feasible, thanks to the molecular sieving and antifouling abilities of SNM. A limit of detection (LOD) within the physiological level of MTP during therapy could be achieved for all cases, i.e., 0.5 and 1.1 μM for 100 times diluted urine and serum, respectively, and 2.2 μM for 1000 times diluted blood samples. These results demonstrated that the nano-ITIES array behaved as a simplified and integrated detection platform for ionizable drug analysis in complex media.