The effect of varying processing temperatures (200, 220 and 240°C) on the thermal and mechanical properties of uncoated and epoxy-coated chrome-tanned leather wastes-ABS composites has been studied. The results obtained showed that the mechanical properties of the composites decreased as the processing temperature increased. Epoxy-coated leather wastes fibre-ABS (CLWABS) composite yielded better mechanical properties compared to the uncoated leather wastes-ABS composite (LWABS). These results were obtained at an optimized processing temperature of 200°C. Furthermore, the results were confirmed by the field emission scanning electron microscopy (FESEM) studies. The differential scanning calorimetry (DSC) studies revealed that the epoxy-coated leather wastes fibres (CLW) showed higher onset and melting temperatures of 131.8 and 179.35°C than the uncoated leather wastes fibres (LW) with glass transition (Tg) and melting (Tm) temperatures of 128.2 and 169.4°C, respectively. When the LW and CLW fibres were mixed with Acrylonitrile butadiene styrene (ABS), the Tg and Tm of CLWABS composite were found to be 94.9 and 269.8°C, respectively, higher than the LWABS composite with Tg and Tm of 89.1 and 261.6°C, respectively. Thus, this study has demonstrated that utilization of epoxy-coated chrome-tanned leather wastes fibres as fillers in the design of ABS-based composites will help a great deal in addressing the problem of solid waste pollutants in our environment.