2, 6-diisopropylaniline (2, 6-DIPA) is a crucial non-intentionally organic additive that allows the assessment of the production processes, formulation qualities, and performance variations in biodegradable mulching film. Moreover, its release into the environment may have certain effects on human health. Hence, this study developed simultaneous heating hydrolysis–extraction and amine switchable hydrophilic solvent vortex-assisted homogeneous liquid–liquid microextraction for the gas chromatography–mass spectrometry analysis of the 2, 6-DIPA additive and its corresponding isocyanates in poly(butylene adipate-co-terephthalate) (PBAT) biodegradable agricultural mulching films. The heating hydrolysis–extraction conditions and factors influencing the efficiency of homogeneous liquid–liquid microextraction, such as the type and volume of amine, homogeneous-phase and phase separation transition pH, and extraction time were investigated and optimized. The optimum heating hydrolysis–extraction conditions were found to be a H2SO4 concentration of 2.5 M, heating temperature of 87.8 °C, and hydrolysis–extraction time of 3.0 h. As a switchable hydrophilic solvent, dipropylamine does not require a dispersant. Vortex assistance is helpful to speed up the extraction. Under the optimum experimental conditions, this method exhibits a better linearity (0.0144~7.200 μg mL−1 with R = 0.9986), low limit of detection and quantification (0.0033 μg g−1 and 0.0103 μg g−1), high extraction recovery (92.5~105.4%), desirable intra- and inter-day precision (relative standard deviation less than 4.1% and 4.7%), and high enrichment factor (90.9). Finally, this method was successfully applied to detect the content of the additive 2, 6-DIPA in PBAT biodegradable agricultural mulching films, thus facilitating production process monitoring or safety assessments.