This work describes a rapid, stable, and accurate method for determining the free amino acids, biogenic amines, and ammonium in tobacco. The target analytes were extracted with microwave-assisted extraction and then derivatized with diethyl ethoxymethylenemalonate, followed by ultra high performance liquid chromatography analysis. The experimental design used to optimize the microwave-assisted extraction conditions showed that the optimal extraction time was 10 min with a temperature of 60°C. The stability of aminoenone derivatives was improved by keeping the pH near 9.0, and there was no obvious degradation during the 80°C heating and room temperature storage. Under optimal conditions, this method showed good linearity (R > 0.999) and sensitivity (limits of detection 0.010-0.081 μg/mL). The extraction recoveries were between 88.4 and 106.5%, while the repeatability and reproducibility ranged from 0.48 to 5.12% and from 1.56 to 6.52%, respectively. The newly developed method was employed to analyze the tobacco from different geographical origins. Principal component analysis showed that four geographical origins of tobacco could be clearly distinguished and that each had their characteristic components. The proposed method also showed great potential for further investigations on nitrogen metabolism in plants.
Diisocyanates are highly reactive compounds with two functional isocyanate groups. The exposure of diisocyanates is associated with severely adverse health effects, such as asthma, inflammation in the respiratory tract, and cancer. The hydrolysis product from diisocyanates to related diamines is also a potential carcinogen. Here, we developed an effective, accurate, and precise method for simultaneous determination of residual diisocyanates and related diamines in biodegradable mulch films, based on N-ethoxycarbonylation derivatization and gas chromatography-mass spectrometry. The method development included the optimization of ultrasonic hydrolysis and extraction, screening of N-ethoxycarbonylation conditions with ethyl chloroformate, evaluation of the diamines degradation, and analysis of the fragmentation mechanisms. Under the optimum experimental conditions, good linearity was observed with R2 > 0.999. The extraction recoveries were found in the range of 93.9–101.2% with repeatabilities and reproducibilities in 0.89–8.12% and 2.12–10.56%, respectively. The limits of detection ranged from 0.0025 to 0.057 µg/mL. The developed method was applied to commercial polybutylene adipate co-terephthalate (PBAT) biodegradable mulch film samples for analysis of the diverse residual diisocyanates and related diamine additives. The components varied greatly among the sample from different origin. Overall, this study provides a reliable method for assessing safety in biodegradable mulch films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.