Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The article aims to study the distribution of residual stresses across the surface layer depth following the machining of test specimens (free orthogonal cutting and burnishing). The machining by cutting and burnishing of 45 steel specimens was carried out using a milling machine with numerical control under varying machining factors. For a comparative analysis, the processes were also modeled via the finite element method using identical experimental values of geometric parameters and machining modes. In order to obtain residual stress distributions across the surface layer depth, probe holes having depths of 0.5; 0.75; 1; 1.5; and 2 mm were drilled. By differentiating the displacement of specimen surface particles, measured using digital image correlation, radial strains around the probe holes were determined. Then, these values were used to determine the residual stress components for each probe hole, and the averaged values of each residual stress component were calculated using the calculation algorithm presented in this article. After burnishing the specimen with a force of 3400 N, the test value of the σx component within the depth range (from the surface) of 0.5–0.75 mm amounted to -250 MPa. Model and experimental distributions of residual stress tensor components across the surface layer depth were obtained following machining via two methods. The experimental values of residual stresses were found to have good convergence with each other and with model distributions at depths up to 1 mm from the machined surface at a drill diameter of 1.7 mm. The proposed approach provides a means to obtain the residual stress distribution across the surface layer depth by drilling probe holes of different depths and estimating radial strains on the specimen surface using the digital image correlation method.
The article aims to study the distribution of residual stresses across the surface layer depth following the machining of test specimens (free orthogonal cutting and burnishing). The machining by cutting and burnishing of 45 steel specimens was carried out using a milling machine with numerical control under varying machining factors. For a comparative analysis, the processes were also modeled via the finite element method using identical experimental values of geometric parameters and machining modes. In order to obtain residual stress distributions across the surface layer depth, probe holes having depths of 0.5; 0.75; 1; 1.5; and 2 mm were drilled. By differentiating the displacement of specimen surface particles, measured using digital image correlation, radial strains around the probe holes were determined. Then, these values were used to determine the residual stress components for each probe hole, and the averaged values of each residual stress component were calculated using the calculation algorithm presented in this article. After burnishing the specimen with a force of 3400 N, the test value of the σx component within the depth range (from the surface) of 0.5–0.75 mm amounted to -250 MPa. Model and experimental distributions of residual stress tensor components across the surface layer depth were obtained following machining via two methods. The experimental values of residual stresses were found to have good convergence with each other and with model distributions at depths up to 1 mm from the machined surface at a drill diameter of 1.7 mm. The proposed approach provides a means to obtain the residual stress distribution across the surface layer depth by drilling probe holes of different depths and estimating radial strains on the specimen surface using the digital image correlation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.