In the approval process of dangerous goods packagings, drop tests onto a flat, essentially unyielding surface are used to assess resistance against mechanical damage. International adopted regulations like ADR and RID define filling good dependent drop heights and filling degrees whilst the user needs to define the maximum gross mass to be tested and approved. Maximum packaging gross mass is defined conservatively and not reached in practice. To meet the defined gross mass in testing, using additives is permitted. However, in some cases, additives are not desirable due to packaging design or filling substance properties. This leads to deviations from the initial gross mass definition. Hence, a certain drop height adjustment is necessary to achieve the required impact loading. Laboratories frequently adjust drop height assuming a perfectly elastic collision that is inaccurate. Appropriate adjustment is not trivial due to energy conversion processes, for example, plastic deformation. In this work, a test stand is developed for measuring the change in kinetic energy of different packaging designs and filling substances in regulative drop tests. The experimental results are used to validate finite‐element (FE) models so that packaging properties can be varied in simulated drop test scenarios. The findings intend to describe the appropriate drop height adjustment of the respective packaging with same design but deviating gross mass to produce comparable mechanical response. The results are highly beneficial for testing laboratories, approval issuing authorities and packaging institutes confronted with the problem of testing packages with gross masses other than those to be approved.