We study the microscopic structure and the stationary propagation velocity of (1+1)-dimensional solid-on-solid interfaces in an Ising lattice-gas model, which are driven far from equilibrium by an applied force, such as a magnetic field or a difference in (electro)chemical potential. We use an analytic nonlinear-response approximation [P. A. Rikvold and M. Kolesik, J. Stat. Phys. 100, 377 (2000)] together with kinetic Monte Carlo simulations. Here we consider interfaces that move under Arrhenius dynamics, which include a microscopic energy barrier between the allowed Ising/latticegas states. Two different dynamics are studied: the standard one-step dynamics (OSD) [H. C. Kang and W. Weinberg, J. Chem. Phys. 90, 2824Phys. 90, (1992] and the two-step transition-dynamics approximation (TDA) [T. Ala-Nissila, J. Kjoll, and S. C. Ying, Phys. Rev. B 46, 846 (1992)]. In the OSD the effects of the applied force and the interaction energies in the model factorize in the transition rates (soft dynamics), while in the TDA such factorization is not possible (hard dynamics). In full agreement with previous general theoretical results we find that the local interface width under the TDA increases dramatically with the applied force. In contrast, the interface structure with the OSD is only weakly influenced by the force, in qualitative agreement with the theoretical expectations. Results are also obtained for the force-dependence and anisotropy of the interface velocity, which also show differences in good agreement with the theoretical expectations for the differences between soft and hard dynamics. Our results confirm that different stochastic interface dynamics that all obey detailed balance and the same conservation laws nevertheless can lead to radically different interface responses to an applied force.