We report a new measurement of the neutron lifetime using ultra-cold neutrons stored in a magneto-gravitational trap made of permanent magnets. Neutrons surviving in the trap after fixed storage times have been counted and the trap losses have continuously been monitored during storage by detecting neutrons leaking from the trap. The value of the neutron lifetime resulting from this measurement is n = (878.3±1.9) s. It is the most precise measurement of the neutron lifetime obtained with magnetically stored neutrons.PACS numbers: 23.40.Bw; 24.80.+y Precision measurements of the neutron lifetime provide stringent tests of the standard electroweak model [1] as well as crucial inputs for Big-Bang nucleosynthesis (BBN) calculations [2]. When combined with measurements of other neutron beta decay correlation coefficients [1], the neutron lifetime enables the determination of the Vud element of the Cabbibo-Kobayashi-Maskawa quark mixing matrix, providing a complementary unitarity test to that obtained from superallowed nuclear beta decay [3]. The neutron lifetime is also one of the key parameters for the determination of yields of light elements in BBN since the ratio between the free neutron and proton abundances drives the extent of fusion reactions during the first few minutes of the Universe [2].The present world average value of the neutron lifetime as quoted by the Particle Data Group (PDG), n = (880.3±1.1) s [4], is dominated by results obtained using ultra-cold neutrons (UCN) in material bottles. These results, and in particular the most precise of them [5], appear to be systematically lower than results obtained using a neutron beam and counting trapped protons following neutron decay [6]. A detailed discussion of the experimental methods and results can be found in Ref. [7].The large discrepancy between the results indicates that all systematic effects are not fully under control. The importance of the neutron lifetime in particle physics and cosmology calls for alternative measuring techniques, with high sensitivity but other potential sources of systematic effects. We report here a new measurement of the neutron lifetime using UCN stored in a magneto-gravitational trap made of permanent magnets.The repulsive force resulting from the interaction between the neutron magnetic moment and a magnetic field gradient can be used for the confinement of neutrons provided their energies are sufficiently low [8]. This has been incorporated for the measurement of the neutron lifetime in various configurations, the most successful having been a sextupole storage ring [9], leading to n = (877±10) s, an Ioffe-Pritchard three dimensional trap leading to a storage time S = (833 −63 +74 ) s [10], and an asymmetric Halbach array trap, with a storage time S = (860±19) s [11].The experimental setup used in the present measurement ( Fig. 1) was operated at one of the beam positions of the UCN source PF2 at the Institut Laue-Langevin (ILL) in Grenoble. It comprises five main parts: a lift to fill the trap; the magnetic tr...