To better understand how water stress and availability affect the enzyme activity and microbial communities in soil, we measured the changes of organic carbon (OC), bacteria and fungi populations, and endoglucanase and exoglucanase activities in a semiarid soil treated with air-dried primary sewage sludge at a rate of 20 g/kg. The water potentials established for soil incubation were: saturation (SA, 0 bar), field capacity (FC, -0.3 bar), and permanent wilting point (PWP, -15 bar). An irrigation treatment was a drying-rewetting cycle (DWC) between -0.3 to -15 bars. After 0, 20, 60 and 90 days of incubation soils were sampled for analysis. The addition of sewage sludge increased soil OC, endoglucanase and exoglucanase activities significantly. The effects of soil moisture, incubation time and their interactions on OC, and endoglucanase and exoglucanase activities in soil were significant. During 20 days of incubation, OC, endoglucanase and exoglucanase activities decreased significantly. Soils incubated in DWC and FC compared to soils incubated in SA and PWP had lower OC contents due to organic matter mineralization. Organic C, exoglucanase and endoglucanase activities significantly increased with increasing soil water potential. The activities of exoglucanase and endoglucanase in soils incubated in SA were significantly higher than those in soils incubated in PWP.