Risk neutral measures are defined such that the basic random assets in a portfolio are martingales. Hence, when the market model is complete, valuation of other financial instruments is a relatively straightforward task when those basic random assets constitute their underlying asset.To determine the risk neutral measure, it is assumed that the current prices of the basic assets are known exactly. However, oftentimes all we know about the current price, or that of a derivative having it as underlying, is a bid-ask range. The question then arises as to how to determine the risk neutral measure from that information. We may want to determine risk neutral measures from that information to use it, for example, to price other derivatives on the same asset. In this paper we propose an extended version of the maximum entropy method to carry out that task. This approach provides a novel solution to this problem, which is computationally simple and fast.