Zellner's g-prior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency issues. In this paper, we study mixtures of g-priors as an alternative to default g-priors that resolve many of the problems with the original formulation, while maintaining the computational tractability that has made the g-prior so popular. We present theoretical properties of the mixture g-priors and provide real and simulated examples to compare the mixture formulation with fixed g-priors, Empirical Bayes approaches and other default procedures.
We focus on Bayesian model selection for the variable selection problem in large model spaces. The challenge is to search the huge model space adequately, while accurately approximating model posterior probabilities for the visited models. The issue of choice of prior distributions for the visited models is also important.
Introduction Research productivity has been linked to a country's intellectual and economic wealth. Further analysis is needed to assess the association between the distribution of research across disciplines and the economic status of countries. Methods By using 55 years of data, spanning 1962 to 2017, of Elsevier publications across a large set of research disciplines and countries globally, this manuscript explores the relationship and evolution of relative research productivity across different disciplines through a network analysis. It also explores the associations of those with economic productivity categories, as measured by the World Bank economic classification. Additional analysis of discipline similarities is possible by exploring the crosscountry evolution of those disciplines. Results Results show similarities in the relative importance of research disciplines among most high-income countries, with larger idiosyncrasies appearing among the remaining countries. This group of high-income countries shows similarities in the dynamics of the relative distribution of research productivity over time, forming a stable research productivity cluster. Lower income countries form smaller, more independent and evolving clusters, and differ significantly from each other and from higher income countries in the relative importance of their research emphases. Country-based similarities in research productivity profiles also appear to be influenced by geographical proximity. Conclusions This new form of analyses of research productivity, and its relation to economic status, reveals novel insights to the dynamics of the economic and research structure of countries. This allows for a deeper understanding of the role a country's research structure may play in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.