Zellner's g-prior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency issues. In this paper, we study mixtures of g-priors as an alternative to default g-priors that resolve many of the problems with the original formulation, while maintaining the computational tractability that has made the g-prior so popular. We present theoretical properties of the mixture g-priors and provide real and simulated examples to compare the mixture formulation with fixed g-priors, Empirical Bayes approaches and other default procedures.
A key question in evaluation of computer models is Does the computer model adequately represent reality? A six-step process for computer model validation is set out in Bayarri et al. [Technometrics 49 (2007) 138--154] (and briefly summarized below), based on comparison of computer model runs with field data of the process being modeled. The methodology is particularly suited to treating the major issues associated with the validation process: quantifying multiple sources of error and uncertainty in computer models; combining multiple sources of information; and being able to adapt to different, but related scenarios. Two complications that frequently arise in practice are the need to deal with highly irregular functional data and the need to acknowledge and incorporate uncertainty in the inputs. We develop methodology to deal with both complications. A key part of the approach utilizes a wavelet representation of the functional data, applies a hierarchical version of the scalar validation methodology to the wavelet coefficients, and transforms back, to ultimately compare computer model output with field output. The generality of the methodology is only limited by the capability of a combination of computational tools and the appropriateness of decompositions of the sort (wavelets) employed here. The methods and analyses we present are illustrated with a test bed dynamic stress analysis for a particular engineering system.Comment: Published in at http://dx.doi.org/10.1214/009053607000000163 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
Motivated by the statistical evaluation of complex computer models, we deal with the issue of objective prior specification for the parameters of Gaussian processes. In particular, we derive the Jeffreys-rule, independence Jeffreys and reference priors for this situation, and prove that the resulting posterior distributions are proper under a quite general set of conditions. A proper flat prior strategy, based on maximum likelihood estimates, is also considered, and all priors are then compared on the grounds of the frequentist properties of the ensuing Bayesian procedures. Computational issues are also addressed in the paper, and we illustrate the proposed solutions by means of an example taken from the field of complex computer model validation.Comment: Published at http://dx.doi.org/10.1214/009053604000001264 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.