Background
In regional wheat trials, when short-stem wheat varieties and high-stem wheat varieties are planted adjacent to each other in small plots, changes in their marginal plot environment can lead to bias in yield evaluation. Currently, there is no relevant research revealing the degree of their mutual influence.
Results
In a regional wheat experiment, when high-stem wheat varieties and short-stem wheat varieties were planted adjacent to one another, there was no significant change in soil temperature or humidity in the high-stem wheat variety experimental plot from November to May compared to the control plot, while the soil humidity in the short-stem wheat variety experimental plot was greater than that in the control plot. In May, the soil temperature of the short-stem wheat varieties in the experimental plot was lower than that in the control plot. Illumination of the wheat canopy in the high-stem wheat variety experimental plot had a significant positive effect in April and May, while illumination of the wheat canopy in the short-stem wheat variety experimental plot had a negative effect. The chlorophyll fluorescence parameters of flag leaves in the high-stem wheat variety experimental plots showed an overall increasing trend, while the chlorophyll fluorescence parameters of flag leaves in the experimental plots of short-stem wheat varieties showed a decreasing trend. The analysis of the economic yield, biological yield, and yield factors in each experimental plot revealed that the marginal effects of the economic yield and 1000-grain weight were particularly significant and manifested as positive effects in the high-stem wheat variety experimental plot and as negative effects in the short-stem wheat variety experimental plot. The economic yield of the high-stem wheat variety experimental plot was significantly greater than that of the control plot, the economic yield of the short-stem wheat variety experimental plot was significantly lower than that of the control plot, and the economic yield of the high-stem experimental plot was significantly greater than that of the short-stem experimental plot. When the yield of the control plot of the high-stem wheat varieties was compared to that of the control plot of the short-stem wheat varieties, the yield of the control plot of the short-stem wheat varieties was significantly greater than that of the control plot of the high-stem wheat varieties.
Conclusions
Based on these findings, it is concluded that plots with high-stem and short-stem wheat varieties are adjacent in regional wheat trials, the plots of high-stem wheat varieties are subject to marginal positive effects, resulting in a significant increase in economic yield; the plots of short-stem wheat varieties are subject to marginal negative effects, resulting in a decrease in economic yield. This study reveals the mutual influence mechanism of environment and yield with adjacent planting of high-stem and short-stem wheat varieties in regional wheat trials, providing a useful reference and guidance for optimizing the layout of regional wheat trials.