2016
DOI: 10.1080/00291951.2015.1126761
|View full text |Cite
|
Sign up to set email alerts
|

Determining the optimum image fusion method for better interpretation of the surface of the Earth

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
4
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 15 publications
(6 citation statements)
references
References 37 publications
0
4
0
2
Order By: Relevance
“…Such a spatial detail enhancement may come in handy in cases where an image of high spectral and spatial fidelity is needed but not available for some reason. Possible reasons include unfavorable weather conditions, financial constraints, or intrinsic sensor limitations that prevent the acquisition of images with high color and spatial detail fidelity at the same time 1,2 . An extensive literature review revealed that the pansharpening has been resorted for a wide range of purposes, including landslide monitoring, 3 change detection, 4 mapping of diseased trees, 5 analyzing agricultural landscapes, 6 crop type differentiation, 7 vegetation mapping, 8 soil mapping, 9 coastline extraction, 10 vineyard segmentation, 11 and so forth.…”
Section: Introductionmentioning
confidence: 99%
“…Such a spatial detail enhancement may come in handy in cases where an image of high spectral and spatial fidelity is needed but not available for some reason. Possible reasons include unfavorable weather conditions, financial constraints, or intrinsic sensor limitations that prevent the acquisition of images with high color and spatial detail fidelity at the same time 1,2 . An extensive literature review revealed that the pansharpening has been resorted for a wide range of purposes, including landslide monitoring, 3 change detection, 4 mapping of diseased trees, 5 analyzing agricultural landscapes, 6 crop type differentiation, 7 vegetation mapping, 8 soil mapping, 9 coastline extraction, 10 vineyard segmentation, 11 and so forth.…”
Section: Introductionmentioning
confidence: 99%
“…Surveyed data reflects geometric information and may serve well as auxiliary data. Point cloud are generated by LiDAR laser sensors and mainly reveals elevation of the study area [40][41][42]. PC can be studied separately and be the auxiliary data in RS imagery analysis as well.…”
Section: Introductionmentioning
confidence: 99%
“…Görüntü kaynaştırma yüksek konumsal çözünürlüklü bir pankromatik (PAN) görüntüdeki konumsal detayların düşük konumsal çözünürlüklü bir çok bantlı (ÇB) görüntüye aktarılarak yüksek çözünürlüklü bir ÇB görüntü elde edilmesidir (Yilmaz ve Gungor 2016a). Başarılı bir görüntü kaynaştırma algoritması PAN görüntüdeki konumsal detayları aktarırken ÇB görüntünün renk yapısını da mümkün olduğunca korumalıdır.…”
Section: Introductionunclassified
“…Literatürdeki görüntü kaynaştırma yöntemleri hakkında detaylı bilgiler Pohl vd. (1998), Blum ve Liu (2005), Stathaki (2011), Pohl ve van Genderen (2016) ve Yilmaz ve Gungor (2016a) tarafından sağlanmıştır. Brovey, Multiplicative (MCV), Temel Bileşenler Analizi (Principal Component Analysis-PCA) ve Gram-Schmidt (GS) gibi yöntemler konumsal detay aktarımında genelde daha başarılı iken High-Pass Filtering (HPF), Wavelet, Ehlers ve Hyperspherical Colour Sharpening (HCS) gibi daha gelişmiş kaynaştırma yöntemleri renk yapısının korunmasında daha başarılıdır.…”
Section: Introductionunclassified
See 1 more Smart Citation