In a rail transit system, there is a constant leakage of current from the subway rails to the earth, and these stray currents have complex propagation paths and a wide range of influence. Since no stray current collection devices are installed at subway depots, some of the stray current leaking from the mainline will converge at the depot, seriously corroding the structural reinforcement and buried metal of the station, thereby jeopardizing the normal operation of subway trains and passenger safety. In this paper, a field-circuit coupling method is proposed to analyze the current leakage and distribution law of the subway mainline and depot. It is found that the failure of the gauge block at the mainline will trigger the maximum leakage of rail current. Additionally, it is observed that the stray current distribution at the depot is mainly influenced by the operating status of the one-way conduction device (OWCD) and the change of rail potential. These results validate the applicability and effectiveness of the field-circuit coupling method proposed in this paper and provide new technical support for the study of stray current leakage distribution in subways.