Background
Many prognostic models of diabetic microvascular complications have been developed, but their performances still varies. Therefore, we conducted a systematic review and meta-analysis to summarise the performances of the existing models.
Methods
Prognostic models of diabetic microvascular complications were retrieved from PubMed and Scopus up to 31 December 2020. Studies were selected, if they developed or internally/externally validated models of any microvascular complication in type 2 diabetes (T2D).
Results
In total, 71 studies were eligible, of which 32, 30 and 18 studies initially developed prognostic model for diabetic retinopathy (DR), chronic kidney disease (CKD) and end stage renal disease (ESRD) with the number of derived equations of 84, 96 and 51, respectively. Most models were derived-phases, some were internal and external validations. Common predictors were age, sex, HbA1c, diabetic duration, SBP and BMI. Traditional statistical models (i.e. Cox and logit regression) were mostly applied, otherwise machine learning. In cohorts, the discriminative performance in derived-logit was pooled with C statistics of 0.82 (0.73‑0.92) for DR and 0.78 (0.74‑0.83) for CKD. Pooled Cox regression yielded 0.75 (0.74‑0.77), 0.78 (0.74‑0.82) and 0.87 (0.84‑0.89) for DR, CKD and ESRD, respectively. External validation performances were sufficiently pooled with 0.81 (0.78‑0.83), 0.75 (0.67‑0.84) and 0.87 (0.85‑0.88) for DR, CKD and ESRD, respectively.
Conclusions
Several prognostic models were developed, but less were externally validated. A few studies derived the models by using appropriate methods and were satisfactory reported. More external validations and impact analyses are required before applying these models in clinical practice.
Systematic review registration
PROSPERO CRD42018105287