2022
DOI: 10.1016/j.envres.2021.112207
|View full text |Cite
|
Sign up to set email alerts
|

Developing air pollution concentration fields for health studies using multiple methods: Cross-comparison and evaluation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
2
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1
1

Relationship

1
6

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 64 publications
0
2
0
2
Order By: Relevance
“…For example, R 2 values are expected to be higher at locations with a wider range of concentrations. Including more metrics, such as mean absolute error or mean fractional error, would be more indicative of model performances. , We nonetheless still choose to use R 2 because it is suitable for quantifying how much temporal pollution concentration variability is captured by the model. Fourth, we only used uncorrected voltage data collected from working and reference electrodes in this study as we do not have voltage data from other electrodes (e.g., auxiliary) readily available.…”
Section: Resultsmentioning
confidence: 99%
“…For example, R 2 values are expected to be higher at locations with a wider range of concentrations. Including more metrics, such as mean absolute error or mean fractional error, would be more indicative of model performances. , We nonetheless still choose to use R 2 because it is suitable for quantifying how much temporal pollution concentration variability is captured by the model. Fourth, we only used uncorrected voltage data collected from working and reference electrodes in this study as we do not have voltage data from other electrodes (e.g., auxiliary) readily available.…”
Section: Resultsmentioning
confidence: 99%
“…Existen diferentes estudios que han utilizado las técnicas de interpolación espacial tales como Ponderación de Distancia Inversa (Inverse Distance Weighted, IDW, por sus siglas en inglés) y Kriging para obtener la variabilidad espacial de contaminantes ambientales, como el SO2 [17,18,19,20,21]. Por ejemplo, [17] utilizaron IDW y Kriging para estimar la distribución espacial de SO2 y otros contaminantes ambientales por el uso de combustibles fósiles en Chengdu, China.…”
Section: Introductionunclassified
“…En el estudio por [20] realizaron una interpolación espacial de SO2, dióxido de nitrógeno y material particulado en la ciudad de Mumbai, India usando IDW y Kriging. Recientemente, [21] implementaron IDW y Kriging para estimar la exposición de diferentes contaminantes ambientales en Atlanta, Georgia usando datos recolectados durante cinco años. Entre los estudios existentes, no se tiene conocimiento de ninguno que haya implementado ambos métodos de interpolación espacial del contaminante SO2 en la Bahía de Quintero, como en el presente estudio.…”
Section: Introductionunclassified
“…Some studies have compared empirical models with mechanistic models (e.g., CMAQ) (Marshall et al, 2008;Samoli et al, 2020), satellite-based models (e.g., aerosol optical depth, AOD) (Yu et al, 2018;Cowie et al, 2019), or hybrid models (Michanowicz et al, 2016;Zhang et al, 2021). Other studies have compared results using different methods for model-building (e.g., LUR vs. machine learning vs. kriging vs. hybrid empirical models) (Adam-Poupart et al, 2014;Jain et al, 2021;Dharmalingam et al, 2022). However, most prior comparisons were at the city or region level, and comparisons were generally within a single research team.…”
Section: Introductionmentioning
confidence: 99%