2011
DOI: 10.1016/j.jocs.2011.05.002
|View full text |Cite
|
Sign up to set email alerts
|

Developing algorithms and software for the parallel solution of the symmetric eigenvalue problem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
14
0
1

Year Published

2011
2011
2017
2017

Publication Types

Select...
6
2

Relationship

2
6

Authors

Journals

citations
Cited by 18 publications
(15 citation statements)
references
References 13 publications
0
14
0
1
Order By: Relevance
“…This fact has been used for the first parallelization approach, where the k eigenvectors are distributed uniformly across the p processes. For the second approach [45] the k eigenvectors are seen as a matrix of size n  k, which is distributed in a 2D blocked manner across a 2D processor grid with p r rows and p c columns. Each process transforms its local part of the matrix.…”
Section: Reduction From Banded To Tridiagonal Formmentioning
confidence: 99%
“…This fact has been used for the first parallelization approach, where the k eigenvectors are distributed uniformly across the p processes. For the second approach [45] the k eigenvectors are seen as a matrix of size n  k, which is distributed in a 2D blocked manner across a 2D processor grid with p r rows and p c columns. Each process transforms its local part of the matrix.…”
Section: Reduction From Banded To Tridiagonal Formmentioning
confidence: 99%
“…Auckenthaler et al [Auckenthaler et al 2011a;Auckenthaler et al 2011b;Auckenthaler 2012] have implemented a two-step distributed-memory tridiagonalization algorithm as part of a solver for the generalized symmetric eigenproblem. Their band-to-tridiagonal step uses an improved version of Lang's algorithm [Lang 1993], which performs one sweep.…”
Section: Related Workmentioning
confidence: 99%
“…For brevity, we will not present this algorithm and its variants, but instead refer the reader to the detailed complexity analysis (and performance modeling) in [Auckenthaler 2012] (summarized in the papers [Auckenthaler et al 2011a] and [Auckenthaler et al 2011b]). We present their complexity results in asymptotic notation; the hidden constant factors vary…”
Section: Eigenvalues Onlymentioning
confidence: 99%
“…Как следствие, время решения экстремальных за-дач (вычислительная стоимость) также существенно возросло. Одним из путей преодоления возникших затруднений является разработка параллельных методов решения как прямых, так и оптимизационных задач, и их эффективная реализация в среде параллельных вычисле-ний [34,35]. Предложен новый параллельный гибридный алгоритм M-PCASFC, который объединяет стохастический алгоритм M-PCA, используемый при сканировании области поиска, и детерминирован-ный метод кривой, заполняющей пространство, при локальном поис-ке [29].…”
Section: P1unclassified