Abstract:To support doubly fed wind turbine (DFWT) groups in offshore wind farms, this paper proposes a distributed coordinated control based on the Hamiltonian energy theory. This strategy provides global stability to closed-loop systems and facilitates output synchronization. First, a model of a DFWT is realized as a port-controlled Hamiltonian system with dissipation (PCH-D), and the single-machine model is expanded into a multi-machine model of a wind turbine group. Then, by using the design methodology of distributed Hamiltonian systems, a distributed coordinated control is presented for a multi-machine PCH-D system. Furthermore, to investigate failures in wind turbine groups, they are divided into two cases: the separation of failed machines from the system, and the grid-connected operation of failed machines after a fault. These cases correspond to undirected and directed graphs, respectively. Finally, simulations prove that distributed coordinated control enhances the reliability and autonomy of wind turbine groups in offshore wind farms.