Therapeutic advances for patients with hemophilia have resulted in reduced mortality, improved joint outcomes, safety from blood-transmitted pathogens, improved quality of life, and a normalized life span in the developed world. The production of recombinant coagulation factors has increased the worldwide capacity for replacement therapy and facilitated aggressive prophylactic therapy. However, this has come at significant cost, and barriers remain to broad application of prophylaxis. Recombinant DNA technology remains a promising platform to develop novel hemophilia therapeutics with improved functional properties to try to overcome some of these remaining barriers. Bioengineering strategies have produced novel therapeutics with increased production efficiency, increased potency and resistance to inactivation, prolonged plasma half-lives, and reduced immunogenicity. Alternative nonbiologic therapies may lead to new treatment paradigms. The current pipeline of new technologies and products is promising and growing with several agents already advancing from preclinical to clinical trials.