The omentum is of interest in the context of obesity-related metabolic disease where adipose tissue exhibits inflammatory changes; however, the immunology of the omentum is underexplored. The greater omentum is draped from the stomach and consists predominantly of adipose tissue studded with lymphoreticular aggregations (milky spots) that distinguish it from other visceral adipose tissues. Milky spots are thought to contain and conduct leukocytes in transit from the blood to the peritoneal cavity, particularly during peritonitis. We show here that both B and T lymphocytes counterflow from the peritoneal cavity to the omentum in mice. Residence in the omentum was brief with a t1/2 residence time of 6 h. Omentum access was pertussis toxin-sensitive, dependent on activation of the Rap1 GTPase, and on the integrin LFA-1. B cells and CD44high T cells accessed the omentum most efficiently, but homing of resting CD44low T cells was also observed. Omental tissue from normal healthy mice was found to contain CD8−CD11bhighMHC class IIhighCD11chigh dendritic cells that promoted the rapid activation of T cells entering the omentum and cross-presented soluble OVA or OVA acquired from either OVA-expressing Escherichia coli or OVA-pulsed spleen cells. We conclude that the omentum incorporates two key features of immunological sentinel function, actively supported lymphocyte traffic and dendritic cells, that reinforce a conceptual framework for function in stimulating adaptive immunity. These results extend basic understanding of omental and peritoneal cavity immunology and of how proinflammatory events occurring within the peritoneal cavity might affect adipocyte and hepatocyte metabolism.