The role of LL-37, a human cationic antimicrobial peptide, in the immune system is not yet clearly understood. It is a widely expressed peptide that can be up-regulated during an immune response. In this report, we demonstrate that LL-37 is a potent antisepsis agent with the ability to inhibit macrophage stimulation by bacterial components such as LPS, lipoteichoic acid, and noncapped lipoarabinomannan. We also demonstrate that LL-37 protects mice against lethal endotoxemia. In addition to preventing macrophage activation by bacterial components, we hypothesized the LL-37 may also have direct effects on macrophage function. We therefore used gene expression profiling to identify macrophage functions that might be modulated by LL-37. These studies revealed that LL-37 directly up-regulates 29 genes and down-regulated another 20 genes. Among the genes predicted to be up-regulated by LL-37 were those encoding chemokines and chemokine receptors. Consistent with this, LL-37 up-regulated the expression of chemokines in macrophages and the mouse lung (monocyte chemoattractant protein 1), human A549 epithelial cells (IL-8), and whole human blood (monocyte chemoattractant protein 1 and IL-8), without stimulating the proinflammatory cytokine, TNFα. LL-37 also up-regulated the chemokine receptors CXCR-4, CCR2, and IL-8RB. These findings indicate that LL-37 may contribute to the immune response by limiting the damage caused by bacterial products and by recruiting immune cells to the site of infection so that they can clear the infection.
Although dendritic cell (DC) activation is a critical event for the induction of immune responses, the signaling pathways involved in this process have not been characterized. In this report, we show that DC activation induced by lipopolysaccharide (LPS) can be separated into two distinct processes: first, maturation, leading to upregulation of MHC and costimulatory molecules, and second, rescue from immediate apoptosis after withdrawal of growth factors (survival). Using a DC culture system that allowed us to propagate immature growth factor–dependent DCs, we have investigated the signaling pathways activated by LPS. We found that LPS induced nuclear translocation of the nuclear factor (NF)-κB transcription factor. Inhibition of NF-κB activation blocked maturation of DCs in terms of upregulation of major histocompatibility complex and costimulatory molecules. In addition, we found that LPS activated the extracellular signal–regulated kinase (ERK), and that specific inhibition of MEK1, the kinase which activates ERK, abrogated the ability of LPS to prevent apoptosis but did not inhibit DC maturation or NF-κB nuclear translocation. These results indicate that ERK and NF-κB regulate different aspects of LPS-induced DC activation: ERK regulates DC survival whereas NF-κB is responsible for DC maturation.
Lipopolysaccharide (LPS), a membrane component of Gram-negative bacteria, stimulates immune responses by activating macrophages, B lymphocytes, and other cells of the immune system. The mechanisms by which LPS activates these cells are poorly characterized. Since protein tyrosine phosphorylation appears to be a major intracellular signaling event that mediates cellular responses, we examined whether LPS alters tyrosine phosphorylation in macrophages.We found that Escherichia coli K235 LPS increased tyrosine phosphorylation of several proteins in the RAW 264.7 murine macrophage cell line and in resident peritoneal macrophages from C3H/HeSNJ mice. Changes in tyrosine phosphorylation were detectable by 4-5 min, reached a maximum by 15 min, and declined after 30-60 min. Protein tyrosine phosphorylation increased following stimulation with LPS at 100 pg/ml and was maximal with 10 ng/ml. Similar changes in tyrosine phosphorylation were induced by Salmonella minnesota R595 LPS and by the biologically active domain of LPS, lipid A, but not by the inactive lipid A derivative N2-monoacylglucosamine 1-phosphate. Phorbol 12-myristate 13-acetate also stimulated protein tyrosine phosphorylation, but some of the modulated proteins were different than those phosphorylated by LPS. Treatment ofRAW 264.7 cells with a tyrosine kinase inhibitor, herbimycin A, inhibited both LPS-stimulated tyrosine phosphorylation and LPS-stimulated release of arachidonic acid metabolites. Thus, increased protein tyrosine phosphorylation is a rapid LPSactivated signaling event that may mediate release of arachidonic acid metabolites in RAW 264.7 cells.
We investigated the mechanism by which cationic antimicrobial peptides block the activation of macrophages by LPS. The initial step in LPS signaling is the transfer of LPS to CD14 by LPS binding protein (LBP). Because many cationic antimicrobial peptides bind LPS, we asked whether these peptides block the binding of LPS to LBP. Using an assay that measures the binding of LPS to immobilized LBP, we show for the first time that a variety of structurally diverse cationic antimicrobial peptides block the interaction of LPS with LBP. The relative ability of different cationic peptides to block the binding of LPS to LBP correlated with their ability to block LPS-induced TNF-α production by the RAW 264.7 macrophage cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.