2015
DOI: 10.1177/0049124114566716
|View full text |Cite
|
Sign up to set email alerts
|

Developing Multidimensional Likert Scales Using Item Factor Analysis

Abstract: This study compares the performance of two approaches in analysing fourpoint Likert rating scales with a factorial model: the classical factor analysis (FA) and the item factor analysis (IFA). For FA, maximum likelihood and weighted least squares estimations using Pearson correlation matrices among items are compared. For IFA, diagonally weighted least squares and unweighted least squares estimations using items polychoric correlation matrices are compared. Two hundred and ten conditions were simulated in a Mo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
72
0
38

Year Published

2017
2017
2023
2023

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 137 publications
(110 citation statements)
references
References 54 publications
(88 reference statements)
0
72
0
38
Order By: Relevance
“…Decision-making as to factor retention was guided by parallel analysis with data permutation and the Hull method (Lorenzo-Seva, Timmerman, and Kiers, 2011). Given the ordered categorical nature of variables, exploratory factor model parameters were estimated using robust weighted least squares mean − and variance−adjusted (WLSMV), as this has been recommended in recent simulation studies for the analysis of Likert−type data (Asún, Rdz-Navarro, and Alvarado, 2015). Information functions of each resulting scale were inspected to examine the achieved latent variable coverage.…”
Section: Data Analytic Strategymentioning
confidence: 99%
“…Decision-making as to factor retention was guided by parallel analysis with data permutation and the Hull method (Lorenzo-Seva, Timmerman, and Kiers, 2011). Given the ordered categorical nature of variables, exploratory factor model parameters were estimated using robust weighted least squares mean − and variance−adjusted (WLSMV), as this has been recommended in recent simulation studies for the analysis of Likert−type data (Asún, Rdz-Navarro, and Alvarado, 2015). Information functions of each resulting scale were inspected to examine the achieved latent variable coverage.…”
Section: Data Analytic Strategymentioning
confidence: 99%
“…O uso de máxima verossimilhança pode subestimar as cargas fatoriais e as correlações entre os fatores durante análises confirmatórias, sobretudo em estudos cujas variáveis são categóricas ordenadas de natureza discreta em decorrência do uso de escalas de Likert ( Hauck-Filho, 2016). Estudos recentes indicam que estimadores, como quadrados mínimos não ponderados e quadrados mínimos ponderados robustos, podem ser mais robustos do que a máxima verossimilhança (Asún, Rdz-Navarro, & Alvarado, 2016). No entanto, no presente estudo, o uso da máxima verossimilhança resultou em cargas fatoriais superiores a 0,5 para todos os itens.…”
Section: Evidências De Validade E Confiabilidadeunclassified
“…La expresión visual del modelo se puede observar en la Figura 1. El AFC se realizó mediante el procedimiento de estimación de mínimos cuadrados no ponderados (ULS) sobre las correlaciones tetracóricas entre los ítems, pues se ha demostrado que ese procedimiento de estimación (Forero, Maydeu-Olivares & GallardoPujol, 2009) y ese tipo de correlaciones (Flora & Curran, 2004; Holgado-Tello, Chacón-Moscoso, Barbero-García & Vila-Abad, 2010) permiten obtener resultados óptimos cuando se trabaja con variables ordinales, al reconocer la naturaleza ordinal de las variables observadas (Asún, Navarro & Alvarado, 2015). Esta versión del AFC es llamada también Análisis Factorial de Ítems (AFI) por algunos autores (Wirth & Edwards, 2007).…”
Section: Análisis Estadísticounclassified