The species abundance distribution (SAD) is one of the most intensively studied distributions in ecology and its hollow-curve shape is one of ecology's most general patterns. We examine the SAD in the context of all possible forms having the same richness (S) and total abundance (N), i.e. the feasible set. We find that feasible sets are dominated by similarly shaped hollow curves, most of which are highly correlated with empirical SADs (most R(2) values > 75%), revealing a strong influence of N and S on the form of the SAD and an a priori explanation for the ubiquitous hollow curve. Empirical SADs are often more hollow and less variable than the majority of the feasible set, revealing exceptional unevenness and relatively low natural variability among ecological communities. We discuss the importance of the feasible set in understanding how general constraints determine observable variation and influence the forms of predicted and empirical patterns.