Antimicrobial biomaterials are critical to aid in the regeneration of oral soft tissue and prevent or treat localised bacterial infections. With the rising trend in antibiotic resistance, there is a pressing clinical need for new antimicrobial chemistries and biomaterial design approaches enabling on-demand activation of antibiotic-free antimicrobial functionality following an infection that are environment-friendly, flexible and commercially-viable. This study explores the feasibility of integrating a bioresorbable electrospun polymer scaffold with localised antimicrobial photodynamic therapy (aPDT) capability. To enable aPDT, we encapsulated a photosensitiser (PS) in polyester fibres in the PS inert state, so that the antibacterial function would be activated on-demand via a visible light source. Fibrous scaffolds were successfully electrospun from FDA-approved polyesters, either poly( -caprolactone (PCL) or poly[(rac-lactide)-co-glycolide] (PLGA) with encapsulated PS (either methylene blue (MB) or erythrosin B (ER)). These were prepared and characterised with regards to their loading efficiency (UV-Vis spectroscopy), microarchitecture (SEM, porometry and BET (Brunauer-Emmett-Teller) analysis), tensile properties, hydrolytic behaviour (contact angle, dye release capability, degradability) and aPDT effect. The electrospun fibres achieved an ~100 wt.% loading efficiency of PS, which significantly increased their tensile modulus and reduced their average fibre diameter and pore size with respect to PS-free controls. In vitro, PS release varied between a burst release profile to limited release within 100 hours depending on the selected scaffold formulation, whilst PLGA scaffolds displayed significant macroscopic shrinkage and fibre merging following incubation in phosphate buffered saline solution. Exposure of