Silk fibroin (SF) has excellent biocompatibility and is one of the most commonly used polymer materials. However, SF fibers have serious drawbacks as antibacterial materials due to their lack of stability and bacterial resistance. Therefore, it is of paramount significance to enhance the stability and bolster the bacterial resistance of SF fibers. In this study, SF fibers were fabricated and loaded with Ag nanoparticles (AgNPs) to improve the antimicrobial properties of the fibers. The impact of reduction conditions on the size of AgNPs was also investigated. In an antibacterial test, the fibers that were prepared exhibited over 98% bacterial resistance against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Therefore, as an efficient antibacterial material, these fibers are expected to become a candidate material in medical and textile fields. This study offers a novel approach for the utilization of SF fibers in the realm of antibacterial applications.