The physicochemical aspects of micro-and macroemulsions have been discussed in relation to enhanced oil recovery processes. The interfacial parameters (e.g. interfacial tension, interfacial viscosity, interfacial charge, contact angle, etc.) responsible for enhanced oil recovery by chemical flooding are described. In oil/brine/surfactant/alcohol systems, a middle phase microemulsion in equilibrium with excess oil and brine forms in a narrow salinity range. The salinity at which equal volumes of brine and oil are solubilized in the middel phase microemulsion is termed as the optimal salinity. The optimal salinity of the system can be shifted to a desired value by varying the concentration and structure of alcohol. It was observed that the formulations consisting of ethoxylated sulfonates and petroleum sulfonates are relatively insensitive to divalent cations. The results show that a minimum in coalescence rate, interfacial tension, surfactant loss, apparent viscosity and a maximum in oil recovery are observed at the optimal salinity of the system. The flattening rate of an oil drop in a surfactant formulation increases strikingly in the presence of alcohol. It appears that the addition of alcohol promotes the mass transfer of surfactant from the aqueous phase to the interface. The addition of alcohol also promotes the coalescence of oil drops, presumably due to a decrease in the interfacial viscosity. Some novel concepts such as surfactant-polymer incompatibility, injection of an oil bank and demulsification to promote oil recovery have been discussed for surfactant flooding processes.During the past two decades, much attention has been focused on enhanced oil recovery by chemical flooding processes in order to increase the world-wide energy supply. It is well recognized that the 0097-6156/85/0272-0149$06.75/0