Abstract:In this study, a thorough and definitive evaluation of Predictive Optimal Energy Management Strategy (POEMS) applications in connected vehicles using 10 to 20 s predicted velocity is conducted for a Hybrid Electric Vehicle (HEV). The presented methodology includes synchronous datasets gathered in Fort Collins, Colorado using a test vehicle equipped with sensors to measure ego vehicle position and motion and that of surrounding objects as well as receive Infrastructure to Vehicle (I2V) information. These datase… Show more
“…The information which is available to CAVs comes from the advanced driver assistance system (ADAS) system of the CAV and from V2I communication where available. The data which are available [64].…”
Connected autonomous vehicle (CAV) technology has the potential to enable significant gains in energy economy (EE). Much research attention has been focused on autonomous eco-driving control enabled by various methods. In this study, the state of the literature on autonomous eco-driving control is reviewed, an overall systems' description of eco-driving control for a CAV is provided, and representative methods are evaluated comparatively against each other in simulation. Simulations are conducted using real-world traffic signal data and a validated future automotive systems technology simulator (FASTSim) model. Results indicate that an EE improvement in the range of 5%-15% is attainable depending on the method and cost function used. In this article it is shown that dynamic programming (DP) methods are most effective in improving EE but are significantly more computationally expensive than other methods. The genetic algorithm (GA) methods are shown to present the most potential in terms of EE improvement and run-time. Results also indicate that velocity-sensitive cost functions allow all the methods to perform better than pure acceleration minimization.
“…The information which is available to CAVs comes from the advanced driver assistance system (ADAS) system of the CAV and from V2I communication where available. The data which are available [64].…”
Connected autonomous vehicle (CAV) technology has the potential to enable significant gains in energy economy (EE). Much research attention has been focused on autonomous eco-driving control enabled by various methods. In this study, the state of the literature on autonomous eco-driving control is reviewed, an overall systems' description of eco-driving control for a CAV is provided, and representative methods are evaluated comparatively against each other in simulation. Simulations are conducted using real-world traffic signal data and a validated future automotive systems technology simulator (FASTSim) model. Results indicate that an EE improvement in the range of 5%-15% is attainable depending on the method and cost function used. In this article it is shown that dynamic programming (DP) methods are most effective in improving EE but are significantly more computationally expensive than other methods. The genetic algorithm (GA) methods are shown to present the most potential in terms of EE improvement and run-time. Results also indicate that velocity-sensitive cost functions allow all the methods to perform better than pure acceleration minimization.
“…Additionally, estimating IMU yaw misalignment by fusing information from automotive onboard sensors and an adaptive Kalman filter can enhance the accuracy of ML models in capturing vehicle dynamics [177]. IoT-based datasets [44,47,56,64,81,85,95,[106][107][108]110,117,122,125,126,128,134,136,138,140,144,149,155,172] 24…”
Electric vehicles are growing in popularity as a form of transportation, but are still underused for several reasons, such as their relatively low range and the high costs associated with manufacturing and maintaining batteries. Many studies using several approaches have been conducted on electric vehicles. Among all studied subjects, here we are interested in the use of machine learning to efficiently manage the energy consumption of electric vehicles, in order to develop intelligent electric vehicles that make quick unprogrammed decisions based on observed data allowing minimal electricity consumption. Our interest is motivated by the adequate results obtained using machine learning in many fields and the increasing but still insufficient use of machine learning to efficiently manage the energy consumption of electric vehicles. From this standpoint, we have built this comprehensive survey covering a broad variety of scientific papers in the field published over the last few years. According to the findings, we identified the current trend and revealed future perspectives.
“…Petkevicius et al (2021) proposed deep-learning models that are built from electric vehicle tracking data and for predicting EV energy use [35]. Few researchers worked on velocity predictions of electric vehicles using machine learning algorithms, and thereby carried out effective energy management [36][37][38][39][40][41][42].…”
The immense growth and penetration of electric vehicles has become a major component of smart transport systems; thereby decreasing the greenhouse gas emissions that pollute the environment. With the increased volumes of electric vehicles (EV) in the past few years, the charging demand of these vehicles has also become an immediate requirement. Due to which, the prediction of the demand of electric vehicle charging is of key importance so that it minimizes the burden on the electric grids and also offers reduced costs of charging. In this research study, an attempt is made to develop a novel deep learning (DL)-based long-short term memory (LSTM) recurrent neural network predictor model to carry out the forecasting of electric vehicle charging demand. The parameters of the new deep long-short term memory (DLSTM) neural predictor model are tuned for its optimal values using the classic arithmetic optimization algorithm (AOA) and the input time series data are decomposed so as to maintain their features using the empirical mode decomposition (EMD). The novel EMD—AOA—DLSTM neural predictor modeled in this study overcomes the vanishing and exploding gradients of basic recurrent neural learning and is tested for its superiority on the EV charging dataset of Georgia Tech, Atlanta, USA. At the time of simulation, the best results of 97.14% prediction accuracy with a mean absolute error of 0.1083 and a root mean square error of 2.0628 × 10−5 are attained. Furthermore, the mean absolute error was evaluated to be 0.1083 and the mean square error pertaining to 4.25516 × 10−10. The results prove the efficacy of the prediction metrics computed with the novel deep learning LSTM neural predictor for the considered dataset in comparison with the previous techniques from existing works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.