Autophagy-related genes (ARGs) have been implicated in the initiation and progression of malignant tumor promotion. To investigate the dynamics of expression of genes, including ARGs, head and neck squamous cell carcinoma (HNSCC) cells were placed under serum-free conditions to induce growth retardation and autophagy, and these starved cells were subjected to transcriptome analysis. Among the 21 starvation-induced genes (SIGs) located in the autophagy, cell proliferation, and survival signaling pathways, we identified SIGs that showed prominent up-regulation or down-regulation. These included AGR2, BST2, CALR, CD22, DDIT3, FOXA2, HSPA5, PIWIL4, PYCR1, SGK3, and TRIB3. The Cancer Genome Atlas (TCGA) database of HNSCC patients was used to examine the expression of up-regulated genes, and CALR, HSPA5, and TRIB3 were highly expressed relative to solid normal tissue in cancer and the survival rate was found to be reduced in patients with high expression. Protein-protein interaction analysis demonstrated the formation of a dense network of these genes. Cox regression analysis revealed that high expression of CALR, HSPA5, and TRIB3 was associated with poor prognosis in patients with TCGA-HNSCC. Therefore, these SIGs up-regulated under serum starvation may be molecular prognostic markers in HNSCC patients.