In this paper, a predictive combustion model is developed and implemented in GT-Power. The model consists of a detailed physically/chemically based ignition delay model, including a 1D spray model. The spray model results at the start of combustion are used to initialize the combustion model. The spray zone and the homogenous natural gas/air mixture are burned with different combustion models, to account for the effect of the inhomogeneous fuel distribution. NOx-emissions are modelled using a standard Extended Zeldovich Mechanism, and for the HC-emissions, two flame quenching models are included and extended with an empirical correlation. The models are calibrated with measurement data from a single cylinder engine, except for the ignition delay model which needs no calibration. The start of combustion and the combustion parameters are predicted well for a wide range of injection timings and operation conditions. Furthermore, considering unburned fuel, the engine operation parameters BSFC and IMEP are also predicted satisfactory. Due to the detailed description of the different combustion phases, the influence of the injection timing on the NOx-emission is captured satisfactorily, with the standard NOx-model. Finally, the knock limited MFB50 is also predicted within an acceptable range.