In the present study, mupirocin (MP), an antimicrobial agent, was formulated as a nanostructured lipid carrier (NLC) by using a novel method named as melt emulsion ultrafiltration method. For the formulation of NLC, glyceryl monostearate and watermelon seed oil were used as solid and liquid lipids, respectively. The method was optimized for various parameters by Taguchi design of experiment and prepared NLCs were characterized for particle size, polydispersity index (PDI), shape, zeta potential, % drug loading, and in vitro release profile. The optimized NLCs were found to be smooth, monodisperse with PDI 0.229 -0.093. NLCs were found to have an average particle size of 139 -0.75 nm and +21.9 -0.98 mV as zeta potential. The % drug loading of optimized NLCs was found to be 59% -0.13%. The optimized NLCs were able to release the drug up to 24 h. The release kinetic study revealed mixed-order kinetics. Hence, it was concluded that the novel method is simple and able to fabricate MP-loaded NLCs with sustained release property and being stable in terms of particle size, PDI, and % drug loading.