In this study, series of nanocomposites consisting of an epoxy matrix and different carbon nanoinclusions (Carbon Black, Multiwall Carbon Nanotubes (MWCNT), Graphene nanoplatelets (GnP) and nanodiamonds) were developed, and their electrical response was examined in wide frequency and temperature ranges. Depending on the filler type and concentration, nanocomposites exhibited either insulator to conductor transitions or dielectric relaxation phenomena. Recorded relaxations were attributed to interfacial polarization, glass to rubber transition and motion of polar side groups. Nanocomposites integrating carbon black or MWCNTs exhibit an abrupt increase in permittivity and conductivity at a critical concentration (or percolation threshold). The insulator to conductor transition is described by means of percolation theory and critical concentration and exponent are determined. Conductance mechanisms are investigated in all sets of nanocomposites, by accounting the influence of temperature on conductivity and by applying the Variable Range Hopping model. Further, analysis reveals hopping conductivity as the main charge migration process below critical concentration, while hopping and metallic-like conduction coexist above it.