The dynamic stability of tailing ponds depend largely on the dynamic characteristics of tailings sand. To explore the dynamic characteristics of tailings sand under different consolidation conditions, consolidated undrained triaxial tests under different dry densities, consolidation ratios and containing pressures, the dynamic shear stress, liquefaction stress ratio, dynamic strength index, dynamic pore water pressure, dynamic modulus, and damping ratio of tailings sand under different consolidation conditions were analyzed. The dynamic shear stress linearly changed with the number of failure vibrations. The liquefaction stress ratio increases with an increase in consolidation ratio, conforming to the quadratic polynomial of the origin. With an increase in failure vibration times, the dynamic internal friction angle decreases gradually. Under different failure vibration times, the dynamic internal friction angle increases with an increase in consolidation ratio and dry density. An exponential function model of dynamic pore pressure growth suitable for equal pressure and bias consolidation conditions is proposed, and the fitting effect is favorable. The dynamic shear modulus ratio decreases with an increase in dynamic shear strain; the damping ratio increases with an increase in dynamic shear strain. The research results can provide a theoretical reference for seismic liquefaction of tailings dams in high-intensity seismic areas.