Owing to the complexity of current reinforcement mechanisms, test results from existing models alone cannot provide a basis for the design of new tailings dam reinforcement projects. On-site reinforced tailings accumulation dam testing is thus required to further understand the reinforcement mechanism. In this study, the influence of reinforcement on tailings dams and the variation law of pore water pressure (PWP) and internal pressure (IP) in the dam body after slurry discharge were analysed, and a comparative analysis was performed. The results showed that during the field test, the PWP and internal earth pressure of the accumulation dam after grouting gradually increased over time. Reinforcement can greatly reduce the PWP and IP of the reinforced dam; compared with geotextiles, the reinforcement effect of geogrids is slightly greater. Based on these results, we conclude that geosynthetics are a good choice for strengthening tailings accumulation dams.
Aiming at the strain-hardening and strain-softening phenomena between geosynthetics and tailings during pull-out tests, bilinear and trilinear shear stress-displacement softening models were proposed. The pull-out process of the hardening reinforcement was divided into the elastic stage, elastic-hardening transition stage, and pure hardening stage. The pull-out process of the softened reinforcement was divided into the elastic stage, elastic-softening transition stage, pure softening stage, softening-residual transition stage, and pure residual stage. The expressions of the interface tension, shear stress, and displacement at the different stages under a pull-out load were derived through the interface basic control equation. At the same time, the evolution law of the interface shear stress at different pull-out stages was analysed, and the predicted results of the two elastic-plastic models were compared with the experimental results. The results show that the predicted results are in good agreement with the experimental data, which verifies the validity of the proposed two elastic-plastic models for the progressive failure analysis of reinforcement at the pull-out interface. During the process of pull-out, the transition stage is not obvious. When the reinforcement is in the elastic stage, the nonlinearity and maximum value of the interface shear stress increase with an increase in the elastic shear stiffness, while the tensile stiffness shows the opposite trend. When the reinforcement is in the hardening or softening stage, the larger the hardening (softening) shear stiffness is, the larger the change range of shear stress is and the more obvious the hardening (softening) characteristics of the reinforcement are. The results comprehensively reflect the progressive failure of reinforcement-tailing interfaces with different strain types and provide theoretical support for the study of the interface characteristics of geosynthetic-reinforced tailings.
To evaluate the shear properties of geotextile-reinforced tailings, triaxial compression tests were performed on geogrids and geotextiles with zero, one, two, and four reinforced layers. The stress–strain characteristics and reinforcement effects of the reinforced tailings with different layers were analyzed. According to the test results, the geogrid stress–strain curves show hardening characteristics, whereas the geotextile stress–strain curves have strain-softening properties. With more reinforced layers, the hardening or softening characteristics become more prominent. We demonstrate that the stress–strain curves of geogrids and geotextile reinforced tailings under different reinforced layers can be fitted by the Duncan–Zhang model, which indicates that the pseudo-cohesion of shear strength index increases linearly whereas the friction angle remains primarily unchanged with the increase in reinforced layers. In addition, we observed that, although the strength of the reinforced tailings increases substantially, the reinforcement effect is more significant at a low confining pressure than at a high confining pressure. On the contrary, the triaxial specimen strength decreases with the increase in the number of reinforced layers. Our findings can provide valuable input toward the design and application of reinforced engineering.
Currently, the influence of geogrid mesh size on interface characteristics are disregarded in various codes and standards. To explore the reasonable mesh size of geogrid used for reinforced tailings, the direct shear test and pull-out test of geogrid reinforced tailings with different mesh sizes were done. The results show that the shear surface of geogrid reinforced tailings is characterized by the combined action of geogrid-tailings interface and tailings-tailings interface; the geogrid-tailings interface friction was separated from the comprehensive interface friction to analyze the influence of area ratio on it under different test conditions; and the mesh size of geogrid reinforced tailings, that is, the area ratio of the geogrid-tailings interface to the shear surface (α), has a greater influence on the pseudo-cohesion and less on the pseudo-friction angle. The friction strength of the geogrid-tailings interface increases slightly with increasing mesh size, then decreases sharply, and the reinforcement effect of geogrid quickly disappears. Considering the direct shear test and pull-out test, the reasonable mesh size of geogrid reinforced tailings should be the mesh size corresponding to α 0.47–0.55. With the increase α, the effect of the geogrid reinforced tailings can be divided into four stages where the third stage ($$0.4 \le \alpha < 0.6$$ 0.4 ≤ α < 0.6 ) is the stage with the best reinforcement effect.
Tailings dams are in danger of liquefaction during earthquakes. The liquefaction process can be indirectly reflected by the evolution rule of the dynamic pore water pressure. To study the development law of dynamic pore water pressure of tailing sand under different consolidation conditions, the evolution equation of critical dynamic pore water pressure of tailings under isotropic and anisotropic consolidation conditions was derived based on the limit equilibrium theory. Moreover, the development law of dynamic pore water pressure was expounded theoretically. The dynamic triaxial tests of tailing silty sand and tailing silt under different dry densities, consolidation ratios, and confining pressures were performed. The dynamic pore water pressure ratio and vibration ratio curves of tailings under isotropic and anisotropic consolidation were analyzed, and a dynamic pore water pressure growth index model suitable for both isotropic and anisotropic consolidation was derived. The results showed that the critical dynamic pore water pressure was positively correlated with the confining pressure and average particle size of tailings under isotropic consolidation conditions. The tailings have a limit dynamic effective internal friction angle φdc under the anisotropic consolidation condition. The evolution law of critical dynamic pore water pressure can be judged according to the dynamic effective internal friction angle of tailing sand φd and φdc values. The consolidation ratio significantly affects the dynamic pore pressure growth curve while confining pressure and dry density do not. For different tailing materials, the dynamic pore water pressure ratio is positively correlated with tailing particles. The dynamic pore water pressure growth process of tailing silty sand and tailing silt can be divided into two stages: rapid and stable growths. The development law of two types of tailings can be described by the dynamic pore water pressure growth index model. The research results can provide a theoretical basis for the seismic design of tailings dams in practical engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.