2016
DOI: 10.3390/w8080351
|View full text |Cite
|
Sign up to set email alerts
|

Development of a Component-Based Modeling Framework for Agricultural Water-Resource Management

Abstract: Because hydrologic responses of an agricultural watershed are influenced by many natural and man-made factors including pond/reservoir, management practices, and/or irrigation/drainage, strategies of hydrological modeling for the watershed must be case-dependent and thus carefully designed to effectively reflect their roles as critical hydrologic components in simulation processes. In this study, we propose a component-based modeling framework that accommodates a flexible modeling approach to consider a variet… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2016
2016
2022
2022

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 43 publications
0
2
0
Order By: Relevance
“…Hydrological models are also commonly used to explore options to manage water resources at point, field, and watershed scales. Accordingly, water management studies have led to the development of numerous hydrologic models [1,2]. Many distinct model-building paradigms have been proposed depending on the consideration of spatial variability, ranging from lumped models, such as the Tank model [3], Hydrologiske Byrån avdeling för Vattenbalans (HBV) [4], HYdrological MODel (HYMOD) [5], and Xinanjiang [6] to physical-based distributed models, such as Systeme Hydrologique Europeen (SHE) [7], AGricultural Non-Point Source Pollution Model (AGNPS) [8], and Areal Non point Source…”
Section: Introductionmentioning
confidence: 99%
“…Hydrological models are also commonly used to explore options to manage water resources at point, field, and watershed scales. Accordingly, water management studies have led to the development of numerous hydrologic models [1,2]. Many distinct model-building paradigms have been proposed depending on the consideration of spatial variability, ranging from lumped models, such as the Tank model [3], Hydrologiske Byrån avdeling för Vattenbalans (HBV) [4], HYdrological MODel (HYMOD) [5], and Xinanjiang [6] to physical-based distributed models, such as Systeme Hydrologique Europeen (SHE) [7], AGricultural Non-Point Source Pollution Model (AGNPS) [8], and Areal Non point Source…”
Section: Introductionmentioning
confidence: 99%
“…This can result in pseudo-optimal solutions (Rajib et al, 2016) by assuming that all model performance, i.e., streamflow, surface runoff, ET, or soil water, is good based on the calibrated parameter. However, none of those studies evaluated other hydrologic and non-hydrologic parameters, such as soil water, ET, yield, and biomass, which can result in incorrect conclusions (Jakeman and Hornberger, 1993;Kang et al, 2016;Migliaccio and Srivastava, 2007).…”
mentioning
confidence: 99%