Abstract:Simulink, an extension of MATLAB, is a graphics-based model development environment for system modeling and simulation. Simulink's user-friendly features, including block (data process) and arrow (data transfer) objects, a large number of existing blocks, no need to write codes, and a drag and drop interface, provide modelers with an easy development environment. In this study, a Tank model was developed using Simulink and applied to a rainfall-runoff simulation for a study watershed to demonstrate the potential of Simulink as a tool for hydrological analysis. In the example given here, the Tank model was extended by two sub-modules representing evapotranspiration and storage-runoff distribution. In addition, model pre-and post-processing, such as input data preparation and results plotting, was carried out in MATLAB. Moreover, model parameters were calibrated using MATLAB optimization tools without any additional programming for linking the calibration algorithms and the model. The graphical representation utilized in the Simulink version of the Tank model helped us to understand the hydrological interactions described in the model, and the modular structure of the program facilitated the addition of new modules and the modification of existing modules as needed. From the study, we found that Simulink could be a useful and convenient environment for hydrological analysis and model development.
This study applied ratio correction factor (RCF) optimization to calibrate the daily storage of agricultural reservoirs located in ungauged catchments that lack stream flow data. Using Run theory, we then assessed the impacts of climate change on the resilience of agricultural reservoir operations during reservoir drought conditions. First, we optimized the RCFs of inflow and outflow in three agricultural reservoirs in Korea using limited measurement data from 2008 to 2017; the results showed high performance regarding the simulation of daily reservoir storage. Second, we simulated daily storage volume in reservoirs from 2018 to 2099, using future climate change data, and analyzed the duration and intensity of reservoir drought conditions, which indicated that the storage capacity is under the critical value. Without calibration, the correlation between the simulated and measured reservoir water volumes was very low, but the correlation increased after calibration of the simulated water volumes. A linear relationship between the simulated and measured volumes was observed with a correlation coefficient value of 0.9, indicating that the simulated reservoir values after calibration closely match the measured values. In addition, the maximum intensity of reservoir drought in the Kicheon reservoir was determined to be 486,000 m3 before calibration but 506,000 m3 after calibration. The duration results showed that long-term reservoir drought conditions will be observed more often in the future owing to climate change, and this could be a negative factor affecting the resilience of reservoir operations.
Because hydrologic responses of an agricultural watershed are influenced by many natural and man-made factors including pond/reservoir, management practices, and/or irrigation/drainage, strategies of hydrological modeling for the watershed must be case-dependent and thus carefully designed to effectively reflect their roles as critical hydrologic components in simulation processes. In this study, we propose a component-based modeling framework that accommodates a flexible modeling approach to consider a variety of hydrologic processes and management practices, especially irrigation-reservoir operation and paddy-farming practices, in watershed-scale modeling. The objectives of this study are twofold: to develop a COmponent-based Modeling Framework for Agricultural water-Resources Management (COMFARM) using an object-oriented programming technique, and to evaluate its applicability as a modeling tool to predict the responses of an agricultural watershed characterized with diverse land uses in a case study. COMFARM facilitates quick and easy development of watershed-specific hydrologic models by providing multiple interchangeable simulation routines for each hydrologic component considered. COMFARM is developed with the JAVA programming language, using Eclipse software. The framework developed in this study is applied to simulating hydrologic processes of the Seon-Am irrigation-district watershed consisting primarily of reservoir-irrigated rice paddies in South Korea. The application study clearly demonstrates the applicability of the framework as a convenient method to build models for hydrologic simulation of an agricultural watershed. The newly developed modeling framework, COMFARM is expected to serve as a useful tool in watershed management planning by allowing quick development of case-oriented analysis tools and evaluation of management scenarios customized to a specific watershed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.