2020
DOI: 10.1051/e3sconf/202019711006
|View full text |Cite
|
Sign up to set email alerts
|

Development of a data-driven model for turbulent heat transfer in turbomachinery

Abstract: Machine Learning (ML) algorithms have become popular in many fields, including applications related to turbomachinery and heat transfer. The key properties of ML are the capability to partially tackle the problem of slowing down of Moore’s law and to dig-out correlations within large datasets like those available on turbomachinery. Data come from experiments and simulations with different degree of accuracy, according to the test-rig or the CFD approach. When dealing with modelling of turbulent flows in turbom… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?