Diagnosing infectious diseases remains a challenge in the developing world where there is a lack of dependable electricity, running water, and skilled technicians. Although rapid immunochromatographic tests (RDTs) have been deployed to diagnose diseases such as malaria, the extreme climate conditions encountered in these regions compounded with the discrepancies in test manufacturing have yielded varying results, so that more innovative and robust technologies are sought. Devoid of antibodies and thermally sensitive materials, we present a robust, colorimetric diagnostic platform for the detection of a malarial biomarker, Plasmodium falciparum Histidine-Rich Protein 2 (PfHRP-II). The assay exploits the optical properties of gold nanoparticles, covalently coupling them to a Ni(II)NTA recognition element specific for PfHRP-II. In the presence of the recombinant malarial biomarker (rcHRP-II), the Ni(II)NTA AuNPs begin to crosslink and aggregate in as little as one minute, triggering a red-to-purple color change in solution. To increase assay sensitivity and platform stability suitable for low-resource regions, the Ni(II)NTA AuNPs were assembled with varying spacer ligands in a mixed monolayer presentation. When assembled with a negatively charged Peg4-thiol ligand, the Ni(II)NTA AuNPs demonstrate low nanomolar limits of rcHRP-II detection in physiological concentrations of human serum albumin and maintain excellent stability at 37°C when stored for four weeks. Detection of the malaria biomarker is also measured by capturing and processing images of aggregated gold nanoparticles with a smartphone camera. By utilizing a smartphone camera and image processing application, there is no significant difference in assay sensitivity and rcHRP-II limit of detection in comparison to a spectrophotometer, further making this diagnostic platform applicable for use in low-resource regions.