DNA structural variation (SV) comprises a major portion of genetic diversity, but its biological impact is unclear. We propose that the genetic history and extraordinary phenotypic variation of dogs make them an ideal mammal in which to study the effects of SV on biology and disease. The hundreds of existing dog breeds were created by selection of extreme morphological and behavioral traits. And along with those traits, each breed carries increased risk for different diseases. We used array CGH to create the first map of DNA copy number variation (CNV) or SV in dogs. The extent of this variation, and some of the gene classes affected, are similar to those of mice and humans. Most canine CNVs affect genes, including disease and candidate disease genes, and are thus likely to be functional. We identified many CNVs that may be breed or breed class specific. Cluster analysis of CNV regions showed that dog breeds tend to group according to breed classes. Our combined findings suggest many CNVs are (1) in linkage disequilibrium with flanking sequence, and (2) associated with breed-specific traits. We discuss how a catalog of structural variation in dogs will accelerate the identification of the genetic basis of canine traits and diseases, beginning with the use of whole genome association and candidate-CNV/gene approaches.
We have demonstrated the utility of a self-contained extraction device for the selective isolation, purification, and concentration of the malaria diagnostic protein biomarker Plasmodium falciparum histidine-rich protein II (pfHRPII) from human plasma and whole blood. The extraction cassette consists of a small-diameter tube containing a series of preloaded processing solutions separated by mineral oil valves. Nickel(II) nitrilotriacetic acid-functionalized magnetic particles are added to a parasite-spiked sample contained within the loading chamber of the device for capture of pfHRPII. The biomarker-bound magnetic particles are then entrained by an external magnetic field and transported through three wash solutions. Processing removes sample interfering agents, and the biomarker target is concentrated in the final chamber for subsequent analysis. At parasitemias of 200 parasites/μL, purification and concentration of pfHRPII with extraction efficiencies in excess of 70% total protein target are achieved. The concentration of nonspecific protein interfering agents was reduced by more than 2 orders of magnitude in the final extracted sample without the need for hours of processing time and specialized laboratory equipment. We have demonstrated an application of this low-resource technology by coupling extraction and concentration of pfHRPII within the cassette to a commonly employed rapid diagnostic test. Sample preprocessing improved the visual limit of detection of this test by over 8-fold, suggesting that the combination of both low-resource technologies could prove to be useful in malaria eradication efforts.
We report a novel, low-resource malaria diagnostic platform inspired by the coffee ring phenomenon, selective for Plasmodium falciparum histidine-rich protein-II (PfHRP-II), a biomarker indicative of the P. falciparum parasite strain. In this diagnostic design, a recombinant HRP-II (rcHRP-II) biomarker is sandwiched between 1 μm Ni(II)nitrilotriacetic acid (NTA) gold-plated polystyrene microspheres (AuPS) and Ni(II)NTA-functionalized glass. After rcHRP-II malaria biomarkers had reacted with Ni(II)NTA-functionalized particles, a 1 μL volume of the particle-protein conjugate solution is deposited onto a functionalized glass slide. Drop evaporation produces the radial flow characteristic of coffee ring formation, and particle-protein conjugates are transported toward the drop edge, where, in the presence of rcHRP-II, particles bind to the Ni(II)NTA-functionalized glass surface. After evaporation, a wash with deionized water removes nonspecifically bound materials while maintaining the integrity of the surface-coupled ring produced by the presence of the protein biomarker. The dynamic range of this design was found to span 3 orders of magnitude, and rings are visible with the naked eye at protein concentrations as low as 10 pM, 1 order of magnitude below the 100 pM PfHRP-II threshold recommended by the World Health Organization. Key enabling features of this design are the inert and robust gold nanoshell to reduce nonspecific interactions on the particle surface, inclusion of a water wash step after drop evaporation to reduce nonspecific binding to the glass, a large diameter particle to project a large two-dimensional viewable area after ring formation, and a low particle density to favor radial flow toward the drop edge and reduce vertical settling to the glass surface in the center of the drop. This robust, antibody-free assay offers a simple user interface and clinically relevant limits of biomarker detection, two critical features required for low-resource malaria detection.
An antibody-free diagnostic reagent has been developed based on the aggregation-induced colorimetric change of Ni(II)NTA-functionalized colloidal gold and silver nanoparticles. This diagnostic strategy utilizes the high binding affinity of histidine-rich proteins with Ni(II)NTA to capture and cross-link the histidine-rich protein mimics with the silver and gold nanoparticles. In model studies, the aggregation behavior of the Ni(II)NTA nanoparticles was tested against synthetic targets including charged poly(amino acid)s (histidine, lysine, arginine, and aspartic acid) and mimics of Plasmodium falciparum histidine-rich protein 2 (pfHRP-II). Aggregation of the nanoparticle sensor was induced by all of the basic poly(amino acid)s including poly(l-histidine) within the pH range (5.5-9.0) tested, which is likely caused by the coordination between the multivalent polymer target and Ni(II)NTA groups on multiple particles. The peptide mimics induced aggregation of the nanoparticles only near their pK(a)'s with higher limits of detection. In addition, monomeric amino acids do not show any aggregation behavior, suggesting that multiple target binding sites are necessary for aggregation. Long-term stability studies showed that gold but not silver nanoparticles remained stable and exhibited similar aggregation behavior after 1 month of storage at room temperature and 37 °C. These results suggest that Ni(II)NTA gold nanoparticles could be further investigated for use as a sensor to detect histidine-rich proteins in biological samples.
This paper introduces NetsBlox, a visual programming environment for learning distributed programming principles. Extending both the visual formalism and open source code base of Snap!, NetsBlox provides two accessible distributed programming abstractions to simplify the process of creating networked applications: message passing and Remote Procedure Calls (RPC). Messaging passing allows NetsBlox applications to send data to other connected NetsBlox clients. Remote Procedure Calls enable seamless integration of third party services, such as Google Maps, weather, traffic and other public domain data sources, into NetsBlox applications. Other RPCs help coordinating distributed clients which may be difficult for novice programmers allowing the user to more quickly create captivating and sophisticated applications. These abstractions empower users to develop networked programs, including multi-player games and clientserver applications. By providing networking support, Nets-Blox not only allows users to learn distribute programming concepts but also makes programming more engaging by incorporating diverse services available on the web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.