A novel visual 3D reconstruction system, composed of a two-axis galvanometer scanner, a camera with a lens, and a set of control units, is introduced in this paper. By changing the mirror angles of the galvanometer scanner fixed in front of the camera, the boresight of the camera can be quickly adjusted. With the variable boresight, the camera can serve as a virtual multi-ocular system (VMOS), which captures the object at different perspectives. The working mechanism with a definite physical meaning is presented. A simple and efficient method for calibrating the intrinsic and extrinsic parameters of the VMOS is presented. The applicability of the proposed system for 3D reconstruction is investigated. Owing to the multiple virtual poses of the camera, the VMOS can provide stronger constraints in the object pose estimation than an ordinary perspective camera does. The experimental results demonstrate that the proposed VMOS is able to achieve 3D reconstruction performance competitive with that of a conventional stereovision system with a much more concise hardware configuration.