This paper builds an infinity shaped (“∞”-shaped) laser scanning welding test platform based on a self-developed motion controller and galvanometer scanner control gateway, takes the autogenous bead-on-plate welding of 304SS with 3 mm thick specimens as the experimental objects, designs the experimental parameters by the Latin hypercube sampling method for obtaining different penetration depth welded joints, and presents a methodology based on the neuroevolution of augmenting topologies for predicting the penetration depth of “∞”-shaped laser scanning welding. Laser power, welding speed, scanning frequency, and scanning amplitude are set as the input parameters of the model, and welding depth (WD) as the output parameter of the model. The model can accurately reflect the nonlinear relationship between the main welding parameters and WD by validation. Moreover, the normalized root mean square error (NRMSE) of the welding depth is about 6.2%. On the whole, the proposed methodology and model can be employed for guiding the actual work in the main process parameters’ preliminary selection and lay the foundation for the study of penetration morphology control of “∞”-shaped laser scanning welding.
In this study, a laser scanning machining system supporting on-the-fly machining and laser power follow-up adjustment was developed to address the increasing demands for high-speed, wide-area, and high-quality laser scanning machining. The developed laser scanning machining system is based on the two-master and multi-slave architecture with synchronization mechanism, and realizes the integrated and synchronous collaborative control of the motion stage or robot, the galvanometer scanner, and the laser over standard industrial ethernet networks. The galvanometer scanner can be connected to the industrial ethernet topology as a node, via the self-developed galvanometer scanner control gateway module, and a “one-transmission and multiple-conversion” approach is proposed to ensure real-time ability and synchronization. The proposal of a laser power follow-up adjustment approach could realize real-time synchronous modulation of the laser power, along with the motion of the galvanometer scanner, which is conducive to ensuring the machining quality. In addition, machining software was developed to realize timesaving and high-quality laser scanning machining. The feasibility and practicability of this laser scanning machining system were verified using specific cases. Results showed that the proposed system overcame the limitation of working field size and isolation between the galvanometer scanner controller with the stage motion controller, and achieved high-speed and efficient laser scanning machining for both large-area consecutively and discontinuously arrayed patterns. Moreover, the integration of laser power follow-up adjustment into the system was conducive to ensuring welding quality and inhibiting welding defects. The proposed system paves the way for high-speed, wide-area, and high-quality laser scanning machining and provides technical convenience and cost advantages for customized laser-processing applications, exhibiting great research value and application potential in the field of material processing engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.