The magnetic field distribution along the radius and height in the working chamber of a hydrocyclone with a radial magnetic field is studied. One of the most important parameters of magnetic hydrocyclones is the magnetic field distribution along the radius and height of the working chamber. It is necessary for calculating the coagulation forces and the magnetic force affecting the particle or flocculus. The magnetic field strength was calculated through magnetic induction, measured by a teslameter at equal intervals and at different values of the supply DC current. The obtained values for the magnetic field strength are presented in the form of graphs. The field distribution curves produced from the dependences found earlier were constructed. The correlation coefficients were calculated. It was proven that the analyzed dependences could be used in further calculations of coagulation forces and magnetic force, because theoretical and experimental data compared favourably with each other. The distribution along the radius and height in the cylindrical part of the magnetic hydrocyclone was consistent with data published in the scientific literature.