A method for controlling the amplitude response of micromechanical oscillators is presented. The micromechanical oscillator is driven by two forces acting both in phase, a fixed sinusoidal force and a feedback force whose amplitude depends on the phase shift. This dependence exhibits a pronounced maximum when the phase shift is 90°, i.e., at the resonant frequency. Experiments performed with a microcantilever prove that this class of active control decreases the bandwidth of the amplitude response about two orders of magnitude. The noise of the microcantilever, mainly of a thermal nature, is not increased at resonance, and it is moderately increased at both sides of the amplitude peak. Moreover, the noise can be tuned by adjusting the ratio between the two driving forces.