A superprotonic conductor, Rb 3 H(SeO 4) 2 , was structurally investigated by means of neutron single crystal diffraction. The hydrogen bond length was found to gradually elongate as the temperature approaches the superprotonic phase transition temperature and jumps to a much longer value upon the transition. The structure of SeO 4 tetrahedron remains unchanged below the transition temperature and becomes more distorted upon the transition with disordered apical oxygen forming three disordered hydrogen bonds. Consequently, the hydrogen atoms (protons) in the hydrogen bonds are significantly delocalized 2-dimensionally being indicative of the proton migration. In the proton distribution map, there found small bumps between the adjacent hydrogen bonds. They may be interstitial sites for the conducting protons corresponding to a monomer state of [HSeO 4 ]- .