2023
DOI: 10.1002/acs.3650
|View full text |Cite
|
Sign up to set email alerts
|

Development of a novel RBFNN‐trained nonlinear channel equalizer based on GDEBOA technique

Abstract: The equalization of digital channels is generally known to be a nonlinear classification problem. Applications such as these can benefit from networks that approximate nonlinear mappings. It gets good performance by adjusting only one coefficient and one center closest to the input vector of the radial basis function network (RBFN), which is a simplified version of stochastic gradient techniques. Artificial Neural Networks (ANNs) are suitable for channel equalization because they have the capability to map bet… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 60 publications
0
0
0
Order By: Relevance