In this study, a molybdenum disulfide/multiwalled carbon nanotubes (MoS2@MWCNTs) nanocomposite was synthesized by employing a simple hydrothermal method. The flower‐like structure of the MoS2@MWCNTs was characterized via scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the load of crystalline MoS2 was verified via X‐ray diffraction (XRD) and energy‐dispersive spectroscopy (EDS). The as‐prepared MoS2@MWCNTs nanocomposite was used to modify glassy carbon electrode (GCE) as an electrochemical sensor for detecting aristolochic acids (AAs). With the optimized parameters, the proposed electrochemical sensor exhibited good sensitivity and a broad linear concentration range for detecting AAs from 0.2 to 10 μmol/L and 10 to 100 μmol/L, with the sensitivity of −3.10 μA/(μmol/L) and −0.91 μA/(μmol/L), respectively. The detection limit was also calculated as 0.06 μmol/L (S/N=3) based on the low background signal. Furthermore, the modified electrochemical sensor exhibited good selectivity, repeatability, reproducibility, and stability, thus showing potential application for detecting AA in chinese herbs with good mean recovery and accuracy. In other words, the MoS2@MWCNTs/GCE can be used as an excellent platform to detect AAs.